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ABSTRACT

The propagation of error in numerical solutions of the compressible Navier-Stokes equations is examined using
linearized, and adjoint linearized versions of the discrete flow solver. With the forward linearization it is
possible, given a measure of the local residual error in the field, to obtain estimates of global solution error.
This allows for example the computation of error estimates on pressure distributions. With the backward or
adjoint linearization it is possible, for any given scalar output quantity, to identify those regions of the field
which contribute the most to the error in that quantity. This information may be used to refine the mesh in a way
that minimizes error in this output functional. Both approaches are be used, not only to provide accurate error
estimates, but also to correct the output. In the following we concentrate on the solution error due to explicitly
added artificial dissipation in the spatial discretization. By comparing with the true solution error obtained
using mesh refinement studies, it is seen that this can be applied as an effective total error indicator for mesh
adaptation.

1.0 INTRODUCTION

There are many situations in numerical simulation where some measure of residual error is known or cheaply
available, but the solution error is desired. A common example is in a partially converged stationary simula-
tion, where the magnitude of the spatial residual is used as a convergence indicator, but provides no explicit
information about the level of error in the solution caused by the lack of full convergence. Another example
is the residual error between the spatial discretization and the continuous equation, which may be estimated
relatively cheaply, but which again say little about solution accuracy. In order to convert residual error into a
leading-order approximation of solution error, a linear system may be solved as follows.

Consider a stationary non-linear problemRh(w) = 0, w being flow variables andRh a spatial discretization
operator, also incorporating boundary conditions. Then if R̃ is some measure of residual error,

∂R

∂w
∆w = R̃,

may be solved for ∆w, a corresponding solution error estimate.
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In essence it is this simple procedure, and it’s effectiveness in estimating discretization error when applied
to the compressible Navier-Stokes equations — where the residual error is taken to be explicitly added artificial
dissipation in the numerical scheme — that will be examined in this paper.

Apart from the choice of residual there are several issues and extensions to the basic idea that must be
discussed. Firstly, by considering the adjoint equation, rather than the linearized equation above, it is possible
to quantify the influence regions in the computational domain have on the error in a specified scalar quantity
of interest, denoted J . This information allows meshes to be locally adapted in such a way that error in J is
minimized. Secondly the construction and solution of the linear system above (and its adjoint equivalent) for
complex flow solvers with a wide range of boundary conditions and turbulence models is a delicate problem,
which has only recently become possible for large three-dimensional test cases. Finally the effectiveness of the
technique in practical problems is addressed, in particular how well-resolved the solution must be before the
error estimator (which assumes the error may be regarded as a linear perturbation) is effective.

After a description of the theory, implementation details are discussed, before the method is applied to error
estimation for 2d viscous flows, and error estimation and adaptation for 2d and 3d inviscid flows. The solver
used throughout is an unstructured finite volume compressible Navier-Stokes solver, the DLR TAU-Code [1, 2].

2.0 COMPRESSIBLE VISCOUS FINITE VOLUME FLOW SOLVER

The unstructured grid, finite volume, compressible Favre-averaged Navier-Stokes solver, the DLR TAU-Code,
is briefly described in order to provide context for the subsequent error estimator and numerical results (more
detailed presentations may be found in [1] and [2]). The code will also be used in inviscid mode by removing
viscous terms, turbulence model, and setting slip boundary conditions.

2.1 Navier-Stokes Equations

The compressible Favre averaged Navier-Stokes equations with adiabatic boundary conditions may be written
in conservative variables w = (ρ, ρux, ρuy, ρE), and in two dimensions on a domain Ω with boundary Γ, itself
with normal vector nΓ as

∂w

∂t
+∇ · (f c(w)− fv(w)) = 0 in Ω,

u = 0, ∇T · nΓ = 0 on Γ,

whereby we will later refer to the complete spatial term in the above equation as the continuous residual R(w),
so that the stationary flow problem may be formulated as R(w) = 0. Here ρ is the fluid density, E the total
energy, and u = (ux, uy) the Cartesian velocity components. The convective and viscous fluxes tensors in the
direction of an arbitrary normal vector n are respectively

f c · n =


ρV

ρuxV + pnx

ρuyV + pny

ρHV

 , fv · n =


0

τxini

τyini

τzini

τijniuj + κ∇iTni

 ,

where V = uini, and the summation convention is used above. The fluid temperature is defined over T =
p/(ρ<) where < is the universal gas constant, and κ is the local thermal conductivity. The pressure p is
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specified for a calorically perfect gas with ratio of specific heats γ, by the state equation

p = (γ − 1)ρ
{
E − 1

2
u · u

}
.

The viscous shear stress tensor τ is given by

τ = µ
(
∇u+∇uT

)
+ λ∇ · uI,

where I is the identity matrix. To obtain the bulk viscosity λ from the molecular viscosity µ we employ Stokes
hypothesis for a monatomic gas: λ = −(2/3)µ. By making the Boussinesq eddy viscosity assumption the
influence of turbulence on the averaged equations above may be accounted for by modifying µ and with some
eddy viscosity µt provided by a turbulence transport model. In the following we apply the one-equation model
of Spalart and Allmaras with Edwards modification (SAE) [3].

2.2 Finite Volume Discretization

Consider the governing equations specified on a finite set of closed control volumes Ωi ⊂ Ω which cover the do-
main Ω completely and intersect with each other only on their boundaries Γi, thereby forming a computational
mesh Mh = {Ωi : ∀i}. Continuous functions are approximated on this mesh as members of the space

Vh,p := {v : v ∈ Pp(Ωi),∀i},

where Pp(Ω) is the space of polynomials of degree ≤ p restricted to the volume Ω. Note that Vh is in general
discontinuous and multivalued on the boundary of two neighbouring control volumes Γij := Ωi ∩Ωj . For each
control volume we have∫

Ωi

∇ · (f c − fv) dΩ =
∫

Γi\Γ
(f c − fv) · n dΓ +

∫
Γi∩Γ

(f c − fv) · n|u=0,∇T ·n=0 dΓ,

but since w ∈ Vh, f c and fv are multivalued on Γij and must be replaced with numerical fluxes across control
volume faces f̂ c(w;n) and f̂v(w;n). It is well known that f̂ c must contain some added dissipation if the
discretization is to be numerically stable. This may be achieved by upwinding, or explicit addition of artificial
viscosity.

One common approach used to obtain a second order accurate method is to take p = 1 and let f̂ c be an
upwind flux such as Roe. Here however we concentrate on p = 0 thereby requiring only one degree of freedom
per flow quantity per control volume, and no solution reconstruction operator. Second order is achieved by use
of the Jameson-Schmidt-Turkel (JST) flux [4] which consists of a central difference of the convective flux plus
first and third order artificial dissipation terms, with a shock switch to weight the two. For a mesh face Γij with
normal nij the flux is

f̂ c(w;nij) :=
1
2

(f c(wi) + f c(wj)) · nij −
1
2
|λij |

[
ε
(2)
ij {wj − wi} − ε

(4)
ij {Lj(w)− Li(w)}

]
, (1)

where wi are the conservative variables in Ωi, |λij | is the maximum convective eigenvalue at the face, and

ε
(2)
ij := k(2) max(Ψi,Ψj)Φ(2), ε

(4)
ij := max(k(4) − ε

(2)
ij , 0)Φ(4),

Li(w) :=
∑

j∈N(i)

(wj − wi), Ψi :=

∑
j∈N(i)(pj − pi)∑
j∈N(i)(pj + pi)

,
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where N(i) is the set of control volume neighbours of i, Ψ is the shock switch, which is large when the
gradient of pressure p is large, and thereby serves to identify discontinuities. The Φ contain some heuristic
mesh anisotropy corrections which aid absolute accuracy on irregular unstructured meshes. Finally k(2), k(4) are
constants, by default 1

2 and 1
64 respectively, through which the absolute level of 2nd- and 4th-order dissipation,

and hence the compromise between stability and accuracy may be adjusted. However for the purposes of the
estimation of error due to dissipation in the following we will also regard them as variable.

The shock switch Ψ is designed to be O(1) near regions of large pressure gradient and O(h2) elsewhere,
where h is the characteristic mesh spacing. Hence near a shock ε(2) ∼ O(1) and ε(4) = 0, so that the scheme
does not attempt to construct a fourth-derivative using a stencil which crosses a discontinuity. In smooth regions
ε(2) ∼ O(h2) and ε(4) ∼ O(1), so that both second- and fourth-differences are active and of O(h3). Away from
shocks the scheme is therefore second-order accurate in h as a result of the central difference in (1).

Discretization of the viscous terms tends to be much less critical; solution gradients are approximated using
a Green-Gauss formula,

∇wi ' gi(w) :=
1

‖Ωi‖
∑

j∈N(i)

1
2
(wi + wj)nij ,

and a central average of the viscous flux fv on each side of the face is taken, f̂v(w;nij) := 1
2(fv(wi, gi(w)) +

fv(wj , gj(w))) · nij . The SAE turbulence transport equation is discretized in a similar way to the mean-flow
equations, with the exception that a first order accurate scalar upwind scheme is used for the convective terms.

In the following the complete spatial discretization on mesh Mh incorporating all terms and boundary
conditions is denoted Rh, so that the discrete problem may be written simply Rh(wh) = 0.

3.0 A POSTERIORI ERROR ESTIMATION

The work on error estimation discussed in the introduction, with the exception of that of Cavallo [5], has been
almost exclusively performed in terms of an adjoint formulation for the error in a single scalar functional of
interest J. This has the advantage of quantifying the influence of local error production at all points of the
domain on error in J, providing in addition to an estimate of the error in J a means of reducing that error
via an indicator for mesh adaptation. However by considering instead the direct (primal) linearization, in the
following an a posteriori error estimate for all output quantities may be computed simultaneously with the
solution of a single linearized flow problem with suitable source terms, an error transport equation (ETE) [5].

The derivation of error estimators for general non-linear operators R is complicated by necessity of intro-
ducing the mean value linearization in order to relate a difference of residuals R(w) − R(wh) to a difference
of solutions (w − wh). This device tends to cloud more critical aspects of the derivation, so in Section 3.1 the
theory will be presented first for a linear operator L and linear functional of interest g, for which the estimator
is also exact. The non-linear generalization is given in Section 3.2, and necessary approximations in order to
obtain an estimator which may be readily computed are discussed in Section 3.3. The implementation of the
linear and adjoint versions of the flow solver is described in Section 3.4.

3.1 Error Representation for Linear Problems

Consider the linear problem
Lu = f, (2)

with unknown vector u and known right-hand side f . Let the functional of interest be of the form J = (g, u),
where the inner product over the problem domain (·, ·) is defined by (u, v) =

∫
Ω u · v dΩ, and define the
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corresponding adjoint (or dual) problem
L∗v = g, (3)

whose solution v satisfies the dual equivalence relation

(g, u) = (L∗v, u) = (v,Lu) = (v, f), (4)

by definition of L∗. Now let uh ∈ Vh be the exact discrete solution of some discretization of (2), Lhuh = fh

where the subscript h indicates discretization. The extent to which the approximate solution uh does not satisfy
the continuous governing equation may be written as the residual rh := f − Luh. The error in uh may be
written εh := (u− uh) which clearly satisfies

Lεh = rh, (5)

by linearity. Given εh the error in any functional J(u)− J(uh) may be directly evaluated as an inner product:
J(u)− J(uh) = (g, εh).

The error in J may equally be evaluated with reference to the dual problem as follows:

J(u)− J(uh) = (g, u)− (g, uh)
= (g, u− uh)
= (L∗v, u− uh)
= (v,L(u− uh))
= (v, f − Luh)
= (v, rh),

where one adjoint problem (equivalent in effort to the original linear problem) must be solved for each (scalar)
functional of interest J . The importance of this dual formulation of the error is that it quantifies the influence
local residual error in the domain on error in J .

This may be seen by noting that the adjoint solution v may be generally interpreted as quantifying the
influence of a point source of mass, momentum or energy at each point in the domain on J [6]. Where this
influence and the residual rh are simultaneously large, a large contribution is made to the inner product (v, rh)
and hence the error in J . Where either the residual is small, or where the point in question has little influence, a
small contribution is made. Hence the error in J has been expressed as a sum of contributions from each point
in the domain, and may be most effectively reduced by reducing rh where the contributions are greatest. The
reduction in rh is typically achieved using local mesh refinement.

Note that if one is interested in minimizing error by mesh adaptation in n distinct functionals Ji, for example
the six forces and moments on a three-dimensional body, then one must solve n adjoint problems (albeit with
the same operator L∗, and hence the same system matrix). A method for reducing this effort to one forward
and one adjoint problem for arbitrary n is alluded to in Section 5.0 in the context of future work.

Returning to the error estimators, in summary

J(u)− J(uh) = (g, εh) = (v, rh),

which may be compared with the primal-dual equivalence relation (4). Note that both primal and dual formu-
lations require the solution of a single linear system in L.
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3.2 Error Representation for Non-linear Problems

Now consider the non-linear problem
R(w) = 0, (6)

with non-linear functional of interest J(w). Assume there exist Fréchet derivatives of R and J, R′[w]w̃ and
(J′[w], w̃) respectively, ∀ w̃. Define the mean value linearization (MVL) R̄′[w,wh] of R between the solution
of (6) and some discrete solution wh as

R̄′[w,wh] =
∫ 1

0
R′[w + θ(wh − w)] dθ,

so that

R(wh)− R(w) =
∫ 1

0

∂

∂θ
R(w + θ(wh − w)) dθ = R̄′[w,wh](wh − w), (7)

whereby the first equality follows from the fundamental theorem of calculus, and the second from the chain
rule. Note that this device depends upon the existence of Fréchet derivatives of R for a continuum of solutions
between wh and w. Similarly for J let

J̄′[w,wh] =
∫ 1

0
J′[w + θ(wh − w)] dθ, so that J(wh)− J(w) = (J̄′[w,wh], wh − w).

As before we may also define the dual problem:

R′∗[wh]ψh = J′[wh], (8)

with adjoint variable ψh and corresponding equivalence relation

(J′[wh], w̃) = (R′∗[wh]ψh, w̃) = (ψh,R
′[wh]w̃). (9)

From (7) an expression for the solution error εh := w − wh is directly obtained

R̄′[w,wh]εh = R(wh), (10)

corresponding to (5). One important difference to the linear case is that (10) contains the exact solution of
the continuous problem within the MVL. To remove this dependence we approximate R̄′[w,wh] by R′[wh],
which may be shown to result in an O‖wh − w‖2 modification to εh. Given εh, the error in functionals may be
estimated as (J̄′[w,wh], εh) ' (J′[wh], εh) + O‖wh − w‖2, but also directly as J(wh)− J(wh + εh).

If the only error of interest is that in J then the adjoint problem may be used to obtain an alternative
expression for the error:

J(wh)− J(w) = (J̄′[w,wh], wh − w)
' (J′[wh], wh − w)
= (R′∗[wh]ψh, wh − w)
= (ψh,R

′[wh](wh − w))
' (ψh, R̄

′[w,wh](wh − w))
= (ψh,R(wh)),

(11)
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where the final equality uses R(w) = 0, and the terms neglected in the approximate equalities above are of the
order of ‖wh −w‖2 and ‖wh −w‖‖ψh − ψ‖, where ψ is the solution of the adjoint problem R′∗[w]ψ = J′[w].
Thus the error in J is recast in terms of solutions of the discrete problem and its adjoint, without reference to
the solution of the original continuous problem. As in the linear case the integrand of (ψh,R(wh)) may be used
to locate contributions to error in J, and reduce it via local mesh refinement.

In summary for the non-linear case, again in reference to the primal-dual equivalence relation (9), we have
the following approximate expressions for the functional error:

J(w)− J(wh) ' (J′[wh], εh) ' (ψh,R(wh)), (12)

with no dependence on the exact solution w.

3.3 Computable Error Estimates and Adaptation Indicators

In the remainder of this work only the non-linear case is considered. The expressions for error given in (12)
are not useful in practice, as they rely on solutions of the (continuous) linearized governing equations, either in
the adjoint (8) or forward (10) form. These are replaced with discretizations of the linearized equations; in our
work on the same mesh on which the flow solution is computed, and with the linearization of the non-linear
discretization. Unlike the Galerkin case it is not necessary to obtain an adjoint solution of higher accuracy than
original flow problem, however doing so, either with a higher-order method or on a globally refined mesh, will
tend to improve the accuracy of the error estimate [7]. However, such approaches will always remain many
times more computationally expensive than the flow problem itself, and as such are likely only ever to be of
limited use in an engineering context.

It remains to approximate the continuous residual of the discrete solution: R(wh) (obviously using the
existing discrete residual Rh is not acceptable, as Rh(wh) = 0). Two approaches are: to evaluate the residual,
(a) with a higher-order version of the same method [8–12], or (b) on a globally refined mesh [13–16]. A higher-
order version of the solver we are currently using is not readily available, and there are substantial difficulties
associated with approach (b). In particular second-order interpolation of discontinuous solutions from coarse
grids onto fine grids is needed. Also efficient evaluation of the fine grid residual without explicit construction
and storage of this grid is difficult; explicit storage would represent a memory bottleneck.

Instead we pursue an idea already explored in [17, 18] of taking the level of explicitly added artificial
dissipation as a measure of the local residual error. The artificial dissipation may be interpreted as an unphysical
term which modifies the governing equations, and hence as an error. An empirical analysis of the proportion
of total discretization error due to the explicitly added dissipation for the DLR Tau-code has been conducted,
and is described in [18]. It has already been noted that the dissipation terms for smooth solutions vary at third-
order in the mesh spacing h, while the central discretization of the fluxes is second-order accurate. Hence for
sufficiently fine meshes the latter will eventually dominate and an error estimator based on dissipation will be
ineffective. Hence the study already mentioned was conducted at a variety of mesh resolutions, and it was seen
that even for slowly varying flows on extremely fine meshes (a subsonic NACA0012 aerofoil in 2d with 1×105

grid points), more than 90% of the discretization error could be ascribed to the dissipation terms. Therefore
neglecting other sources of discretization error may be justified.

Such an analysis immediately suggests (assuming perturbations to the solution are sufficiently small for
first-order effects to dominate) an a posteriori error estimator for dissipation in the JST scheme:

η = k(2) dJ
dk(2)

+ k(4) dJ
dk(4)

. (13)
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This construction is closely related to the estimators already discussed, as may be seen if we consider evaluating
the derivatives above using the adjoint as follows. Consider the Lagrangian: L(w,ψ) = J(w)+ψTR(w),which
always takes the value J provided the state equation R(w) = 0 is fulfilled. Then also dJ/dk = dL/dk, so that

dJ
dk

=
dL

dk
=
∂J

∂w

dw
dk

+ ψT

{
∂R

∂k
+
∂R

∂w

dw
dk

}
(14)

=
{
∂J

∂w
+ ψT ∂R

∂w

}
dw
dk

+ ψT ∂R

∂k
= ψT ∂R

∂k
, (15)

whereby the final equality holds if ψ satisfies the adjoint equation

∂R

∂w

T

ψ = −∂J
∂w

T

.

Substituting (15) into (13) gives

η = ψ

(
k(2) ∂R

∂k(2)
+ k(4) ∂R

∂k(4)

)
,

which may be seen to be of the same form as (11) with R(wh) replaced by a measure of the local dissipation.
So the dissipation error estimator may be constructed by two distinct arguments.

The same approach to the derivation may be extended to a dissipation error indicator for J , by considering
the influence of local variation of dissipation level. Let the dissipation coefficients be interpreted as being
defined independently for each control volume,

K =
{
k

(2)
i , k

(4)
i : ∀i

}
.

with the coefficient on a face being an average of immediate neighbours,

k
(2)
ij =

1
2

(
k

(2)
i + k

(2)
j

)
, k

(4)
ij =

1
2

(
k

(4)
i + k

(4)
j

)
.

Now dJ/dk(2)
i for example is a measure of the influence of the second-order dissipation in cell i on J , so an

indicator for dissipation-error in J is

ξi = k(2) dJ

dk(2)
i

+ k(4) dJ

dk(4)
i

. (16)

Given ψ the only additional computation expense in calculating ν and ξi is the evaluation of ∂R/∂k, which
may be written down immediately. For k(4)

j for example it is

∂Ri

∂k
(4)
j

=


∑

m∈N(i)−
1
4 |λim|{Lm(w)− Li(w)} j = i

−1
4 |λij |{Lj(w)− Li(w)} j ∈ N(i)

0 otherwise

, (17)

and is always of the same order in mesh spacing h as the original dissipation term, so that away from singu-
larities in the adjoint solution (which occur at sharp trailing edges in 2d transonic flows) the error indicator
approaches zero as the mesh is refined.
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Note that the relations ∑
i

∂Ri

∂k
(4)
j

= 0,
∑

j

∂Ri

∂k
(4)
j

=
∂Ri

∂k(4)
,

hold, so that in particular
η =

∑
i

ξi, (18)

and the sum of all local error indicators is the total error estimator as expected.
When constructing an approximation for R(wh) in the error transport equation on the other hand, the arti-

ficial dissipation terms are constructed directly.

3.4 Implementation of Linearized Solvers

The implementation of a solver for the linearized and adjointed governing equations is a non-trivial task re-
quiring considerable effort, and has been investigated intensively in the context of control theory and optimiza-
tion [19–22]. There are two possible approaches: the continuous approach of discretizing the linearized (and
subsequently adjointed) continuous equations, exemplified by the work of Jameson and co-authors [20, 23, 24],
and the discrete approach of linearizing the existing discretization of the non-linear equation [25–27]. The
former is limited in the J for which it may be constructed, which causes for example problems with functionals
containing skin friction forces [23]. The handling of turbulence models is also problematic in a continuous
framework, and has not yet been seen in the literature.

A continuous linearized inviscid solver has recently been used in an error estimation context by Cavallo
and Sinha [5]. Here we follow the increasingly popular discrete approach, in which there are two principle
difficulties in implementation: (a) the exact construction of the Jacobian ∂Rh/∂w and (b) the solution of the
resulting linear system.

Typically it is the case that Rh may be written explicitly in terms of w, and hence the partial derivative with
respect to w may be calculated per hand straightforwardly; while at the same time Rh is extremely complex,
containing non-linear fluxes, gradient calculations, limiters, state equations, boundary conditions, turbulence
models, etc., etc., and thus the differentiation is extremely tedious, time-consuming and error-prone. Never-
theless this operation must only be performed once. This has been done for our solver, and the result verified
against finite differences applied to the original flux routines, see [2]. In order to avoid storing the complete
Jacobian, and the resulting impractically high memory costs, methods have also been developed to reduce
the storage needed while keeping the cost of matrix-vector product evaluations low, at the cost of some ap-
proximations in the Jacobian which have been shown to have negligible influence on results. The method and
implementation is discussed in some detail along with parallelization issues in [28]. An analysis of the influence
of the approximations was performed in an aerodynamic optimization context in [29].

The solution of the linear system is equally problematic. Stiffness in the non-linear problem (due to high
Reynolds numbers, and turbulence models in our problems) is inherited by the linearized equations, and the
size of the systems is such that application of standard sparse matrix preconditioners such as ILU factorization
rapidly becomes extremely expensive, as well as ineffective in three-dimensions. One solution is to apply exist-
ing, well tested iterative techniques for the non-linear equations, either directly (for the error transport equation),
or in adjointed form (for the adjoint equation), whereby it may be proven that then the rate of convergence of
the linear problems is identical to the asymptotic rate of convergence of the non-linear problem [30, 28]. In
our case these iterations are applied as a preconditioner to a restarted GMRES algorithm [31] to increase the
robustness of the scheme in cases for which the non-linear iteration does not converge asymptotically [32, 28].
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4.0 NUMERICAL RESULTS

The methods described above have been applied to some simple flows about aerofoils and wings, where func-
tionals of interest are taken to be lift coefficient CL (non-dimensionalized force normal to the onflow direction),
and drag CD (tangent to the onflow direction). Error in non-dimensionalized surface pressure CP is also exam-
ined using the error transport equation.

The mesh adaptation tool available to us, which takes an original mesh, an adaptation indicator and produces
a locally refined mesh, is currently restricted to the refinement of simplices. For viscous flows the solver requires
anisotropic rectangular cells for accurate resolution of the boundary-layer, hence goal-oriented adaptation of
viscous problems will not be examined here, only the estimation of error in Section 4.1. Adaptation will be
applied to two- and three-dimensional inviscid flows in Section 4.2.

In order to judge the accuracy of the error estimator, an accurate and independent estimate of the true
solution error is needed. In the following this is always provided by mesh convergence studies on a sequence
of uniformly refined meshes. Where points are added on the surface of the geometry by the refinement, their
position is reconstructed using cubic splines. A flow computation is performed on each of these meshes, and
Richardson extrapolation on average mesh spacing is applied toCL andCD on the three finest results to estimate
their limiting value. Where error in CP distribution is needed, it is estimated as the difference in CP between
the current and finest mesh, as applying Richardson extrapolation to CP has been seen to give highly oscillatory
results.

4.1 Application of the Error Transport Equation

To demonstrate the error transport equation we consider in two-dimensions the RAE 2822 aerofoil at subsonic
conditions corresponding to RAE Case 1 of Cook et al. [33], in particular the Mach number is 0.5, and the
Reynolds number is taken as 6.5 × 106 with reference to the chord length. Turbulence is modeled with SAE
as already mentioned [3], and this model is used in linearized form in the transport equation. The flow is
computed on a sequence of five structured meshes, a plot of the coarsest mesh and all CP distributions are
shown in Figure 1. The coarsest mesh (Grid 5) is exceptionally coarse with about 500 cells; each subsequent
mesh has four times as many cells. One useful measure of mesh quality for high-Reynolds number flows is the
Reynolds number based on height of the first cell at the wall, denoted y+, which (as a rule of thumb) should
be less than one if the boundary-layer is to be well resolved. The finest mesh (Grid 1) with ≈ 130 × 103 cells
has an average y+ of one, which approximately doubles with each coarser mesh. Hence all but the finest mesh
should be considered relatively poor.

Nonetheless CL and CD converge cleanly, see the reference results in Figure 2, allowing confidence to be
placed in the Richardson extrapolated values. Estimates of error in the force coefficients obtained from the
error transport equation are also plotted, and it may be seen that the agreement between the estimate and the
true error is excellent, and tends to improve as the meshes become finer. As well as providing information on
the error, the estimates may be used to correct the solution values, and the remaining error in these corrected
values is also plotted in Figure 2. In all cases the accuracy of the coefficients is improved, on average by half
an order of magnitude.

Unlike error estimation using the dual approach, errors in CL and CD for each mesh above were obtained
with a single linear calculation, which provides information regarding error at all points in the domain. The
estimated error in CP from these calculations is plotted in Figure 3, along with difference in CP between the
actual mesh and the finest mesh. Again the two are in good agreement, with the agreement improving as the
meshes are refined. Remarkable and satisfying is that the estimator already produces very useful results on
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Figure 1: Subsonic turbulent RAE-2822 test-case. Coarsest (Grid 5) mesh (left), pressure coefficient distribution
on aerofoil surface (right).
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Figure 2: Convergence of lift and drag error with global mesh refinement for the subsonic turbulent RAE-2822.
Shown are: an approximation to the true error based on Richardson extrapolated values (squares), the dissipation-
based error estimate (diamonds), and the error in the value corrected with the estimate (circles).
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Grid 4, with only 2000 points and y+ ' 10, indicating very poor boundary-layer resolution. This provides an
indication that mesh convergence is already sufficiently advanced by Grid 4 to make linearized methods useful,
and gives hope that similar accuracy may be achieved on similarly coarse grids for more complex flow fields.

The detailed reproduction of individual “wiggles” in the error on Grid 2 is not fully understood, but is
likely to be related to the use of the exact linearization of the spatial discretization in the ETE, which thereby
incorporates all particulars and idiosyncrasies of the flow solver.

4.2 Application of Goal-Oriented Adaptation

4.2.1 Supersonic Aerofoil: NACA0012

The goal-oriented error indicator of (11) is briefly examined for a case which highlights the manner in which
the adjoint solution captures the information transport properties of the flow. Consider an inviscid supersonic
NACA0012 aerofoil with M∞ = 1.5 and α = 1.0, for which contours of pressure are shown in Figure 4. The
flow is supersonic everywhere expect for a small region around the stagnation point; as a result information
transport is to a large extent unidirectional and errors produced downstream of the aerofoil do not influence lift
or drag. This behaviour is captured by the adjoint solution (also shown), which identifies the region upstream
of the leading edge, and those characteristics which intersect with the trailing edge as having largest influence
on the drag. The two terms of the indicator (16) are also plotted in Figure 4, where the relative influence and
regional activation of the two dissipation terms — k(2) active near the shock, and k(4) partly switched off there
— as well as the effect of the adjoint solution are visible. In front of the shock the solution is uniform, residuals
are small, and hence the indicators are small despite the large adjoint solution there. The general irregularity
of the indicator, which is partly due to its necessarily high sensitivity to the grid, demands that a small amount
of smoothing is used. Here and in the following, two Laplacian smoothing passes with a coefficient of 0.5 are
applied.

To quantify the effectiveness of the adjoint error indicator and estimator we consider goal-oriented adap-
tation of this case with respect to CL and CD. We proceed as follows: on the initial mesh a flow solution is
computed, followed by an adjoint solution for J , based on which the error indicator and estimator are evaluated.
The mesh is refined, whereby a fixed percentage of new points are added (in this case 40%), and a new flow
solution is computed, etc. All components of this chain are parallelized and no stopping criterion is used, rather
the calculation halts when the available computing resources are exhausted. The reference solution is obtained
from an initial coarse mesh of 11× 103 points, which is uniformly refined 5 times resulting in a mesh of about
11× 106 points.

For the purposes of comparison a feature-based adaptation indicator is considered. The simple idea is that
large errors are made locally where solution gradients are large with respect to the cell spacing. For some flow
variable φ the indicator on a mesh face Γij is [34]:

ξFB
ij =

∑
φ

ωφh
q|φj − φi|, (19)

where q ≥ 0 adjusts the rate at which the indicator approaches zero as the mesh is refined, and ωφ are constant
flow variable weights. In the following q = 0 and the variables total pressure and total enthalpy are used with
equal weighting.

The mesh convergence for CL and CD for the various methods is displayed in Figure 5 where all errors
are calculated with respect to the reference solution. For the error indicator results the error estimate (18)
and the therewith corrected coefficient values are also plotted. The uniformly refined meshes converge cleanly

Efficient A Posteriori Error Estimation for Finite Volume Methods 

46 - 12 RTO-MP-AVT-147 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



x

C
P

er
ro

r

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

Grid 4

x

C
P

er
ro

r

0 0.2 0.4 0.6 0.8 1

-0.005

0

0.005

Grid 2

x

C
P

er
ro

r

0 0.2 0.4 0.6 0.8 1

-0.2

0

Error w.r.t. Grid 1
Estimated error

Grid 5

x

C
P

er
ro

r

0 0.2 0.4 0.6 0.8 1

-0.04

-0.02

0

0.02

Grid 3

Figure 3: Error in surface pressure coefficients for th 4 coarse grids, calculated with respect to the finest (Grid
1) solution (solid lines), and estimated with the error transport equation using the dissipation residual (dashed
lines).
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Figure 4: Error indicator contours for supersonic NACA0012 drag: pressure (top left), first adjoint variable (top
right), k(2), k(4) sensitivity (bottom left, right respectively). The two sensor plots use the same (logarithmic) scale,
where dark regions represent large indicator values.
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Figure 5: Convergence of CD (left) and CL (right) errors for global, local-gradient and dissipation-error refinement,
the supersonic NACA0012 case. Error estimator and corrected error are shown for the dissipation-based indicator.

after initial non-linearities between the solutions on the first three meshes. The low order of convergence is a
consequence of solution discontinuities.

Immediately evident is that the feature-based indicator converges poorly and irregularly, performing not
much better than uniform refinement for CD, and actually worse for CL. For other test cases apparent conver-
gence to incorrect solutions has even been observed. The poor suitability of standard feature-based indicators
for strongly hyperbolic problems is well known, but these findings emphasize the pressing need for a cheap and
reliable alternative.

The dissipation error indicator on the other hand, achieves the accuracy of the finest uniformly refined grid
within 7 adaptation iterations, and with a factor of 100 less mesh points. Especially interesting is that the level
of error achieved after each adaptation iteration corresponds roughly to the error in the corresponding uniform
grid, suggesting that on each step the indicator is refining the mesh everywhere where a significant reduction in
the error is to be made. The estimated error corresponds very well to the actual error for almost all points, and
moderately well in the remaining two points. As a consequence the force coefficients corrected with the error
estimate are on the whole significantly more accurate than the original force coefficients.

The meshes resulting from repeated local gradient based adaptation, and error indicator adaptation on CL

are shown in Figure 6, whereby the two grids have approximately the same number of points. The former mesh
appears less dense because of the large numbers of points expended in the small region of the shock, and points
far from the aerofoil, outside the frame of the figure. The error indicator mesh highlights the importance of the
leading edge, the characteristics intersecting the trailing edge, and that part of the shock in a position to influence
the surface pressure. Note that although the shock is well resolved it was not refined at every adaptation iteration
as was the case with the standard indicator, which has over-resolved the shock at the expense of other important
flow regions.
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Figure 6: Meshes for the supersonic case obtained using adaptation with respect to local solution gradients (left),
and the dissipation-based error indicator (right). The two grids have a similar number of points.

4.2.2 Transonic wing: ONERA M6

In three-dimensions we consider — what has become a standard 3d transonic test case — the ONERA M6 wing
at an angle-of-attack of α = 3.06, and far-field Mach number of M∞ = 0.84. Surface pressure contours are
shown in Figure 7 where the familiar lambda shock structure is visible.

Convergence results are given in Figure 8. Horizontal lines mark typical engineering accuracy bounds of
±5 drag counts, and ±0.5 lift counts. Feature-based adaptation can be seen to perform poorly, and the error
indicator significantly better, however particularly striking is that the error estimator corrected force coefficient
values all lie within the given accuracy bounds, even on the initial grid — in fact the estimator is most accurate
on the initial grid. This may be a consequence of the error that is estimated, being the same as the error that
is reduced by the adaptation. As the adaptation progresses that part of the error not due to dissipation will
eventually dominate. Cuts through the grids obtained with the two adaptation methods are given in Figure 9
where the relative irregularity of the grid based on the error indicator is evident. This suggests the need for more
sophisticated smoothing than that applied at present, as irregular grids have a strong influence on the stability
and accuracy of finite volume methods.

5.0 CONCLUSIONS AND FURTHER WORK

It has been demonstrated that error estimation techniques may be applied efficiently and effectively in a finite
volume framework by using a discrete linearization of the flow solver and a local estimate of residual error
based on explicitly added artificial dissipation. This technique relies on the dominance of this dissipation over
the remaining part of the discretization error. This dominance has been previously demonstrated to be the case
for the unstructured finite volume method presently considered, and for the level of accuracy in which engineers
are principally interested [18].

The resulting estimator has been shown to accurately estimate the error in force coefficients and entire
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Figure 7: Transonic ONERA M6 wing test-case with lambda shock structure.
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Figure 8: Convergence of CD (left) and CL (right) for local-gradient and dissipation-error refinement for the ONERA
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Figure 9: ONERA M6 initial, local-gradient, and error indicator (drag) adapted grids cut at y = 6. The two adapted
grids have a similar number of nodes.
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pressure distributions for 2d Navier-Stokes calculations, while the corresponding adjoint formulation has been
seen to provide a mesh adaptation indicator which considerably out-performs local-gradient based indicators.

Future activities should include comparison of the dissipation-based estimator with estimators based on
residuals obtained from globally refined grids. Though it is clear from the results presented that the dissipation-
based estimator is effective, it is difficult to judge how much more accuracy in the estimator may be obtained
by using an improved residual. In a similar vein the current approach should be implemented in other finite
volume solvers to ensure that the results do not depend on some special feature of the particular solver used.

Finally: goal-oriented adaptation may be applied to problems with n functionals of interest Ji without
solving n separate adjoint problems. If the sign of the error ei in each Ji is known, say si ∈ {−1, 1}, then a
composite functional may be constructed as

J̄ :=
∑

i

siJi,

in which the component errors do not cancel. The single adjoint problem corresponding to J̄ then gives an error
indicator for

∑
i |ei|. All si may be approximated with a single solution of the error transport equation. This

approach will be examined in future work.
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Question: Have you looked at the sensitivity of solutions to numerical schemes at the boundary? 
 
 
Authors’ Reply: No, but this is currently and in future an area of intense investigation, especially 
with regard to the dissipation operator at the boundary. 
 
 
 
Discusser’s Name: Bil Kleb 
 
 
Question: How do you specify the mesh adaptation schedule for both your feature-driven and 
adjoint-driven adaptation and is there a method (besides “ad hoc”) for determining it? 
 
 
Authors’ Reply: In both cases the number of new points is specified as a percentage of existing 
points. For example the adaptation indicator may be distributed in [0,1], and we iterate on some 
threshold value c (using repeated bisection) until the required number of points is approximately 
achieved. Within each step of the iteration, no mesh modification is made, only mesh elements are 
marked. 
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Question: With explicit dissipation the formulation is straight forward. How will it work for methods 
where dissipation is implicit in flux formulation? 
 
 
Authors’ Reply: Every consistent flux may be written as a central difference plus a dissipation term. 
In order to extend the method, simply add a fictive parameter , multiplying the dissipation term with 
nominal value 1, and examine the influence of perturbations of this parameter. Because in general 
fluxes have 2nd order accurate in space dissipation terms, this should work better than for the central 
scheme (with 3rd order dissipation) 
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